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J. Phys. A: Math. Gen. 20 (1987) 2693-2697. Printed in the UK 

Monte Carlo simulation of the general elliptic operator 

Jan Vrbik 
Department of Mathematics, Brock University, St Catharines, Ontario L2S 3A1, Canada 

Received 1 August 1986 

Abstract. Several versions of an algorithm for Monte Carlo simulation of solutions of 
partial differential equations involving a general elliptic operator are developed, with the 
emphasis on quadratic accuracy and computational efficiency. 

1. Introduction 

Vrbik (1985) describes a quadratically accurate Monte Carlo technique for simulating 
the action of the operator 

exp[-t(-fv’+VF(r) + E(*))] (1) 

when applied to an arbitrary non-negative function, represented by a random sample 
of ‘configurations’. 

Such a simulation can be used to solve 

-fV’f(r, t)+VF(r)f(r ,  t )+E(r)f(r ,  t) = -(a/at)f(r, t )  (2) 

- f V ’ f ( r ) + V F ( r ) f ( r ) + ( E ( r ) - E , , ) f ( r )  =o. (3) 

exp[ -t( - f V j V k o j k (  r )  + V F (  r )  + E (  r))]  (4) 

or its time-independent counterpart posed, usually, as an eigenvalue problem, i.e. 

We would like to extend these results to the more general 

(with implied summation over each pair of identical indices), where D ( r )  is a symmetric 
positive-definite matrix for all values of r (N-dimensional vector). Also note that 
Djk(r) is inside the operational range of both Vj and V k .  

This extension will be useful for solving all physical problems described by the 
Fokker-Planck equation and having a non-negative solution. The most eminent 
examples are the phenomenon of diffusion (possibly accompanied by creation/absorp- 
tion of particles), heat conduction and flow of fluids through porous media, allowing 
a non-homogeneous environment undergoing its own motion. 

Another potential application relates to solving the Schrodinger equation to obtain 
the ground state of a complex system of particles (atoms or molecules). One may seek 
a solution in the form of f ( R ) g ( R ) ,  where f ( R )  is a known function of the particles’ 
locations, constructed to approximate the cusps of the exact solution. This should 
smooth out the ‘rough edges’ of the remaining g ( R )  function to be simulated (more 
accurately) by the proposed technique. Thus f ( R )  will effectively become the new 
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(varying) diffusion coefficient and will similarly modify the other terms of the original 
equation. 

2. Linearly accurate solution 

In this section we aim to achieve first-order accuracy (in terms of expanding expression 
(4) in t ) ,  which means that the error of the corresponding procedure for solving ( 3 )  
will be proportional to t (the discrete time step of the simulation). 

We already know how to simulate operators corresponding to the second and third 
terms of (4) (see Reynolds et al (1982) or Vrbik and Rothstein (1985)) via ‘drift’ and 
‘branching’, respectively, so the only missing component remains the simulation of the 
‘diffusion’ operator 

exp( i t V j V  kDjk ( r)). ( 5 )  

We claim that this can be achieved by the following. 
(i) Finding a matrix D’”(r) such that 

Note that this can be done easily by choosing D112 to have the lower-triangular form 
(and not the standard symmetric solution obtained by diagonalising D ) .  

(ii) Advancing each configuration r to a new location r’ (see Vrbik 1985) by 

r’ = r + D’”(r) - z (7) 

where the zi are N independent random values drawn from a symmetric (such as 
normal or uniform) distribution with zero mean and variance equal to t. 

To prove (7), first consider the following function of r’, r and t :  

G ( r ’ t  r, t )  = (27rt)-”’ det(D-’l2(r)) exp[-(r’-r)r* D-’(r) (r’-r)/2t]  (8) 

where D-’l2 = (D”’) - ’ .  Note that 

I G ( r ’ t  r, t)f(r) d r  (9) 

is, in statistical terms, equivalent to (7) ,  withf(r) being the probability density function 
of r, and z having the normal distribution mentioned above. 

If we now define 

B, = o,’”(r)+[Vjoik‘/’](r- r’Ik (10) 

(the operational range of V being restricted to the square brackets), the substitution 

(11) z = D - ’ / 2  . ( r  - r’) 
(thus d z i / d r j  = B,) enables us to write 

lim I G (  r ’ t  r, t )  -f( r) d r  = lim 
1-0 1-0 

x exp(-z2/2t) det(D-’/2)/det(B) *f(r(z))  dz =f(r’) 



General elliptic operator 2695 

since 

lim ( 2 ~ t ) - ~ I ’  exp(-e2/2t) = 6(z) 

S ( z ) d e = S ( r - r ’ ) d r  and det(D-’/’)/det(B)I,=,, = 1. 

1-0 

(13) 

Thus the zeroth-order term of (9) (seen as an operator applied to f) is the identity. 
To derive its first-order terms, we need 

G(r ’+  r, t ) f ( r )  d r  
t+o a t  

= -limt (2nr)-”/’[V: exp(-t2/2t)] - det(D-’/2)/det(B)f(r(e)) d t  
1-0 5 
1-0 I = -1im f ( 2 ~ t ) - ~ / ~  exp(-e2/2t) - V s  det(D-”2)/det(B)f(r(e)) de 

- - -4 5 6(r-r’)Bi;’V,Bk,’Vk det(D-’/’)/det(B)f(r) d r  

as V , ,  = B,Y‘V,. 

formulae: 
Explicit evaluation of the last integral is rather tedious and rests on the following 

and 

V J v k  det( D-’/’)/det( B )  = CkC, VkC, i- V , c k  -k AmUkAumJ 

When confirming these, remember that, in general, 

(16) 
where C, = [V,D,,] 1/2 D-1/2 a nd A,,, = [V,Dt,!2]D~:’2. 

V H - ’ -  ki - - H -  k / [ V H , m I H , :  v det{H} = [VHJk]HG’ det{H}. 

With the help of these, one obtains as the final result of integration (14) 

-ivjvkDjkf ( r ’ )  (17) 

as desired. 

3. Quadratically accurate solution 

To derive a t 2  accurate analogue of (81, it is necessary to use the more powerful 
technique of Risken (1984) which utilises the Fourier transform of the 6 function. 
This yields 

G (  r‘ t r, t ) = exp[ - t (  - fV,V,D,( r ) ) A ] 6 (  r - r’)  

= exp[( t / 2 ) D , V , V , 1 ( 2 ~ ) - ~  exp{iu(r - r ’ ) }  du 
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= ( 2 T ) - N  [ 1 - ( t / 2 ) D l ~ u i u ~ + ( t 2 / 8 ) D k i U k ~ l D I J U ~ U J  I 
- ( t 2 /  8) Dkl LV k IDij 1 uiu~ 
-i(t2/4)Dkl[VID~,]U,U/Uk +. . .I exp[iu(r- r’)] du (18) 

where the dots imply terms of third and higher order in t ,  i2 = -1,  and the superscript 
A turns an operator into its adjoint (-iD,V,V, in this case). D and its derivatives are 
to be evaluated at r ( r ’  is considered a fixed parameter here). 

The last integral can be easily carried out (to within the t 2  accuracy), resulting in 
the probability density function of the random variable r’- r (now, r’ is considered 
varying and r fixed!). Unfortunately, this itself would not provide an explicit prescrip- 
tion for simulating values from such a distribution; thus we have to employ the following 
alternative approach. 

From the definition of a characteristic function of a distribution and the related 
theory (see, for example, Cramer 1971), it is immediately obvious that the following 
expression from the last integral 
1 - ( ~ / ~ ) D I J ~ , U J  + ( f2 /8 )DkI~k~IDt ,~ i~ /  - ( f 2 / 8 ~ D k l ~ v k v l D ~ ~ ~ ~ u ~  

-i(t2/4)Dkl[VID~]U,U~Ukf. . . (19) 

M:”=O+. . . 

represents the characteristic function of the required distribution. From this, we can 
determine all the distribution’s moments. These are 

M ( , 2 ’ = f D r l + ( f 2 / 4 ) D k l [ V k V ~ D I I ] + .  . . 
M‘,“ = ( t2/2)( Dkl[VIDy 1 + DdLV IDkj 1 + D,k[VlDnk 1) f . . . 
kf$)[ = t 2 (  DyDkl + DlkDII + DIID,k) f . . . 

(20) 

for i, j ,  k, 1 = 1 , 2 , .  . . , N, all the higher moments being zero (in the +. . . sense). Note 
that the moments have been properly symmetrised. 

All we have to do now is to construct a random vector with these moments and 
use it for the actual simulation of r’-r. It is not difficult to check that a possible 
solution is 

(21) Dt/2Z, + ( t/8)Dy~/2Dk,[VkV/D,,]ZJ f RVkZJZk - tR, f ts,Z, 
where 

RIJk = ~ D , ~ / ’ [ V I D , , ] D ~ , / ’  

SIJ = - iDy,’/2( RmlkRi~k f RmlkRikl) 
and z is a random vector with independent components generated from the normal 
distribution with zero mean and variance equal to t (or an equivalent-any symmetric 
distribution with the same first four moments will do; let us call such a distribution 
N{O, t l ) .  

The essential formulae to help verify (21) are 
E(z,)=O 

E(z,z,) = 8,J (22) 
E( z,z,zk) = 0 

and 
E( ziz/zkzl) = ( 8 y a k l  + 8ikajl f 8118/k ) t 2  

where E denotes the expected value of a random variable. 



General elliptic operator 2697 

Note that in the isotropic case of D,,(r)  = S,D(r) ,  expression (21) reduces to 

D”*z, + ( t/8)D1/’[V’D]z, + (1/4)[V,D]~,z, - ( t/4)[VlD] 

- (t/32)D-”’([V,DI[V,D]z, + [V,D][V,D]zJ). 

The actual simulation (of both the general and isotropic case) can be simplified 
even further (with the objective of avoiding derivatives of Do)  if we replace, in 
expression (21), 

and (24) 

where x is a random vector generated, independently of& from N ( 0 ,  t }  and 

tDkf L v  k v  ID,, 1 by (D(+’+ D(-J-2D(r))m, 

Rgk by (1/8t)D;,’/*(D(+’- D(-))mlXk 

D ( + )  = D(  r + r )  x) 

D ( - )  = D(  r - D1l2( r )  * x). 
(25) 

It is a simple exercise to check that such a replacement will not change the moments 
of (21); thus the final version of simulating ‘diffusion’ of a configuration with an  initial 
location at r is to advance it by adding, to r, the following random vector: 

D~”z, +(1/8)(D‘+’+ D‘-’-2D)l,2, 

Computationally, this will involve three evaluations of D, one matrix inversion and 
some further simple matrix manipulation (note that the full matrix multiplication is 
not required). This seems a relatively modest cost of a potentially significant increase 
in accuracy. 
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