Monte Carlo simulation of the general elliptic operator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 202693
(http://iopscience.iop.org/0305-4470/20/10/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:40

Please note that terms and conditions apply.

Monte Carlo simulation of the general elliptic operator

Jan Vrbik
Department of Mathematics, Brock University, St Catharines, Ontario L2S 3A1, Canada

Received 1 August 1986

Abstract

Several versions of an algorithm for Monte Carlo simulation of solutions of partial differential equations involving a general elliptic operator are developed, with the emphasis on quadratic accuracy and computational efficiency.

1. Introduction

Vrbik (1985) describes a quadratically accurate Monte Carlo technique for simulating the action of the operator

$$
\begin{equation*}
\exp \left[-t\left(-\frac{1}{2} \nabla^{2}+\nabla \boldsymbol{F}(\boldsymbol{r})+E(\boldsymbol{r})\right)\right] \tag{1}
\end{equation*}
$$

when applied to an arbitrary non-negative function, represented by a random sample of 'configurations'.

Such a simulation can be used to solve

$$
\begin{equation*}
-\frac{1}{2} \nabla^{2} f(\boldsymbol{r}, t)+\nabla \boldsymbol{F}(\boldsymbol{r}) f(\boldsymbol{r}, t)+E(\boldsymbol{r}) f(\boldsymbol{r}, t)=-(\partial / \partial t) f(\boldsymbol{r}, t) \tag{2}
\end{equation*}
$$

or its time-independent counterpart posed, usually, as an eigenvalue problem, i.e.

$$
\begin{equation*}
-\frac{1}{2} \nabla^{2} f(\boldsymbol{r})+\nabla \boldsymbol{F}(\boldsymbol{r}) f(\boldsymbol{r})+\left(E(\boldsymbol{r})-E_{0}\right) f(\boldsymbol{r})=0 \tag{3}
\end{equation*}
$$

We would like to extend these results to the more general

$$
\begin{equation*}
\exp \left[-t\left(-\frac{1}{2} \nabla_{j} \nabla_{k} D_{j k}(\boldsymbol{r})+\nabla \boldsymbol{F}(\boldsymbol{r})+E(\boldsymbol{r})\right)\right] \tag{4}
\end{equation*}
$$

(with implied summation over each pair of identical indices), where $\boldsymbol{D}(\boldsymbol{r})$ is a symmetric positive-definite matrix for all values of r (N-dimensional vector). Also note that $D_{j k}(r)$ is inside the operational range of both ∇_{j} and ∇_{k}.

This extension will be useful for solving all physical problems described by the Fokker-Planck equation and having a non-negative solution. The most eminent examples are the phenomenon of diffusion (possibly accompanied by creation/absorption of particles), heat conduction and flow of fluids through porous media, allowing a non-homogeneous environment undergoing its own motion.

Another potential application relates to solving the Schrödinger equation to obtain the ground state of a complex system of particles (atoms or molecules). One may seek a solution in the form of $f(\boldsymbol{R}) g(\boldsymbol{R})$, where $f(\boldsymbol{R})$ is a known function of the particles' locations, constructed to approximate the cusps of the exact solution. This should smooth out the 'rough edges' of the remaining $g(\boldsymbol{R})$ function to be simulated (more accurately) by the proposed technique. Thus $f(\boldsymbol{R})$ will effectively become the new
(varying) diffusion coefficient and will similarly modify the other terms of the original equation.

2. Linearly accurate solution

In this section we aim to achieve first-order accuracy (in terms of expanding expression (4) in t, which means that the error of the corresponding procedure for solving (3) will be proportional to t (the discrete time step of the simulation).

We already know how to simulate operators corresponding to the second and third terms of (4) (see Reynolds et al (1982) or Vrbik and Rothstein (1985)) via 'drift' and 'branching', respectively, so the only missing component remains the simulation of the 'diffusion' operator

$$
\begin{equation*}
\exp \left(\frac{1}{2} t \nabla_{j} \nabla_{k} D_{j k}(r)\right) \tag{5}
\end{equation*}
$$

We claim that this can be achieved by the following.
(i) Finding a matrix $D^{1 / 2}(r)$ such that

$$
\begin{equation*}
\boldsymbol{D}^{1 / 2} \cdot\left(\boldsymbol{D}^{1 / 2}\right)^{\mathrm{T}}=\boldsymbol{D}(\boldsymbol{r}) \tag{6}
\end{equation*}
$$

Note that this can be done easily by choosing $D^{1 / 2}$ to have the lower-triangular form (and not the standard symmetric solution obtained by diagonalising D).
(ii) Advancing each configuration \boldsymbol{r} to a new location \boldsymbol{r}^{\prime} (see Vrbik 1985) by

$$
\begin{equation*}
r^{\prime}=r+D^{1 / 2}(r) \cdot z \tag{7}
\end{equation*}
$$

where the z_{i} are N independent random values drawn from a symmetric (such as normal or uniform) distribution with zero mean and variance equal to t.

To prove (7), first consider the following function of $\boldsymbol{r}^{\prime}, \boldsymbol{r}$ and t :
$G\left(\boldsymbol{r}^{\prime} \leftarrow \boldsymbol{r}, \boldsymbol{t}\right)=(2 \pi t)^{-\boldsymbol{N} / 2} \operatorname{det}\left(\boldsymbol{D}^{-1 / 2}(\boldsymbol{r})\right) \exp \left[-\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)^{T} \cdot \boldsymbol{D}^{-1}(\boldsymbol{r}) \cdot\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right) / 2 t\right]$
where $D^{-1 / 2}=\left(D^{1 / 2}\right)^{-1}$. Note that

$$
\begin{equation*}
\int G\left(\boldsymbol{r}^{\prime} \leftarrow \boldsymbol{r}, t\right) f(\boldsymbol{r}) \mathrm{d} \boldsymbol{r} \tag{9}
\end{equation*}
$$

is, in statistical terms, equivalent to (7), with $f(r)$ being the probability density function of r, and z having the normal distribution mentioned above.

If we now define

$$
\begin{equation*}
B_{i j}=D_{i j}^{-1 / 2}(r)+\left[\nabla_{j} D_{i k}^{-1 / 2}\right]\left(r-r^{\prime}\right)_{k} \tag{10}
\end{equation*}
$$

(the operational range of ∇ being restricted to the square brackets), the substitution

$$
\begin{equation*}
z=D^{-1 / 2} \cdot\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \tag{11}
\end{equation*}
$$

(thus $\partial z_{i} / \partial r_{j}=\boldsymbol{B}_{i j}$) enables us to write

$$
\begin{align*}
\lim _{t \rightarrow 0} \int G\left(r^{\prime} \leftarrow r, t\right) & \cdot f(r) \mathrm{d} r=\lim _{t \rightarrow 0} \int(2 \pi t)^{-N / 2} \\
& \times \exp \left(-z^{2} / 2 t\right) \operatorname{det}\left(D^{-1 / 2}\right) / \operatorname{det}(B) \cdot f(r(z)) \mathrm{d} z=f\left(\boldsymbol{r}^{\prime}\right) \tag{12}
\end{align*}
$$

since

$$
\begin{align*}
& \lim _{\rightarrow 0}(2 \pi t)^{-N / 2} \exp \left(-z^{2} / 2 t\right)=\delta(\boldsymbol{z}) \\
& \delta(z) \mathrm{d} z=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \mathrm{d} \boldsymbol{r} \quad \text { and } \quad \operatorname{det}\left(\boldsymbol{D}^{-1 / 2}\right) /\left.\operatorname{det}(\boldsymbol{B})\right|_{r=\boldsymbol{r}^{\prime}}=1 . \tag{13}
\end{align*}
$$

Thus the zeroth-order term of (9) (seen as an operator applied to f) is the identity. To derive its first-order terms, we need

$$
\begin{align*}
-\lim _{t \rightarrow 0} \frac{\partial}{\partial t} \int & G\left(\boldsymbol{r}^{\prime} \leftarrow \boldsymbol{r}, t\right) f(\boldsymbol{r}) \mathrm{d} \boldsymbol{r} \\
& =-\lim _{t \rightarrow 0} \frac{1}{2} \int(2 \pi t)^{-N / 2}\left[\nabla_{z}^{2} \exp \left(-z^{2} / 2 t\right)\right] \cdot \operatorname{det}\left(\boldsymbol{D}^{-1 / 2}\right) / \operatorname{det}(\boldsymbol{B}) f(\boldsymbol{r}(\boldsymbol{z})) \mathrm{d} \boldsymbol{z} \\
& =-\lim _{t \rightarrow 0} \frac{1}{2} \int(2 \pi t)^{-N / 2} \exp \left(-z^{2} / 2 t\right) \cdot \nabla_{z}^{2} \operatorname{det}\left(\boldsymbol{D}^{-1 / 2}\right) / \operatorname{det}(\boldsymbol{B}) f(\boldsymbol{r}(\boldsymbol{z})) \mathrm{d} \boldsymbol{z} \\
& =-\frac{1}{2} \int \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) B_{j i}^{-1} \nabla_{j} \boldsymbol{B}_{k i}^{-1} \nabla_{k} \operatorname{det}\left(\boldsymbol{D}^{-1 / 2}\right) / \operatorname{det}(\boldsymbol{B}) f(\boldsymbol{r}) \mathrm{d} \boldsymbol{r} \tag{14}
\end{align*}
$$

as $\nabla_{2 i}=B_{j i}^{-1} \nabla_{j}$.
Explicit evaluation of the last integral is rather tedious and rests on the following formulae:

$$
\begin{align*}
& \left.\nabla_{j} B_{k i}^{-1}\right|_{r=r^{\prime}}=\left(A_{j i l}+A_{l i j}\right) D_{l k}^{1 / 2}\left(\boldsymbol{r}^{\prime}\right) \\
& \nabla_{k} \operatorname{det}\left(\boldsymbol{D}^{-1 / 2}\right) /\left.\operatorname{det}(\boldsymbol{B})\right|_{r=r^{\prime}}=C_{k}\left(\boldsymbol{r}^{\prime}\right) \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\nabla_{j} \nabla_{k} \operatorname{det}\left(D^{-1 / 2}\right) / \operatorname{det}(\boldsymbol{B})=C_{k} C_{j}+\nabla_{k} C_{j}+\nabla_{j} C_{k}+A_{m u k} A_{u m j} \tag{16}
\end{equation*}
$$

where $C_{k}=\left[\nabla_{m} D_{m u}^{1 / 2}\right] D_{u i}^{-1 / 2}$ and $A_{j i l}=\left[\nabla_{j} D_{i u}^{1 / 2}\right] D_{u l}^{-1 / 2}$.
When confirming these, remember that, in general,

$$
\nabla H_{k i}^{-1}=-H_{k l}^{-1}\left[\nabla H_{l m}\right] H_{m i}^{-1} \quad \nabla \operatorname{det}\{\boldsymbol{H}\}=\left[\nabla H_{j k}\right] H_{k j}^{-1} \operatorname{det}\{\boldsymbol{H}\}
$$

With the help of these, one obtains as the final result of integration (14)

$$
\begin{equation*}
-\frac{1}{2} \nabla_{j} \nabla_{k} D_{j k} f\left(\boldsymbol{r}^{\prime}\right) \tag{17}
\end{equation*}
$$

as desired.

3. Quadratically accurate solution

To derive a t^{2} accurate analogue of (8), it is necessary to use the more powerful technique of Risken (1984) which utilises the Fourier transform of the δ function. This yields

$$
\begin{aligned}
G\left(\boldsymbol{r}^{\prime} \leftarrow \boldsymbol{r}, t\right) & =\exp \left[-t\left(-\frac{1}{2} \nabla_{i} \nabla_{j} D_{i j}(\boldsymbol{r})\right)^{\mathrm{A}}\right] \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \\
& =\exp \left[(t / 2) D_{i j} \nabla_{i} \nabla_{j}\right](2 \pi)^{-N} \int \exp \left\{\mathbf{i} \boldsymbol{u}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\right\} \mathrm{d} \boldsymbol{u}
\end{aligned}
$$

$$
\begin{align*}
= & (2 \pi)^{-N} \int\left[1-(t / 2) D_{i j} u_{i} u_{j}+\left(t^{2} / 8\right) D_{k l} u_{k} u_{l} D_{i j} u_{i} u_{j}\right. \\
& -\left(t^{2} / 8\right) D_{k l}\left[\nabla_{k} \nabla_{l} D_{i j}\right] u_{i} u_{j} \\
& \left.-\mathrm{i}\left(t^{2} / 4\right) D_{k l}\left[\nabla_{l} D_{i j}\right] u_{i} u_{j} u_{k}+\ldots\right] \exp \left[\mathrm{i} u\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\right] \mathrm{d} \boldsymbol{u} \tag{18}
\end{align*}
$$

where the dots imply terms of third and higher order in $t, \mathrm{i}^{2}=-1$, and the superscript A turns an operator into its adjoint ($-\frac{1}{2} D_{i j} \nabla_{i} \nabla_{j}$ in this case). D and its derivatives are to be evaluated at \boldsymbol{r} (\boldsymbol{r}^{\prime} is considered a fixed parameter here).

The last integral can be easily carried out (to within the t^{2} accuracy), resulting in the probability density function of the random variable $\boldsymbol{r}^{\prime}-\boldsymbol{r}$ (now, \boldsymbol{r}^{\prime} is considered varying and \boldsymbol{r} fixed!). Unfortunately, this itself would not provide an explicit prescription for simulating values from such a distribution; thus we have to employ the following alternative approach.

From the definition of a characteristic function of a distribution and the related theory (see, for example, Cramer 1971), it is immediately obvious that the following expression from the last integral

$$
\begin{gather*}
1-(t / 2) D_{i j} u_{i} u_{j}+\left(t^{2} / 8\right) D_{k l} u_{k} u_{l} D_{i j} u_{i} u_{j}-\left(t^{2} / 8\right) D_{k l}\left[\nabla_{k} \nabla_{l} D_{i j}\right] u_{i} u_{j} \\
-\mathrm{i}\left(t^{2} / 4\right) D_{k l}\left[\nabla_{l} D_{i j}\right] u_{i} u_{j} u_{k}+\ldots \tag{19}
\end{gather*}
$$

represents the characteristic function of the required distribution. From this, we can determine all the distribution's moments. These are

$$
\begin{align*}
& M_{i}^{(1)}=0+\ldots \\
& M_{i j}^{(2)}=t D_{i j}+\left(t^{2} / 4\right) D_{k l}\left[\nabla_{k} \nabla_{l} D_{i j}\right]+\ldots \\
& M_{i j k}^{(3)}=\left(t^{2} / 2\right)\left(D_{k l}\left[\nabla_{l} D_{i j}\right]+D_{i l}\left[\nabla_{l} D_{k j}\right]+D_{j k}\left[\nabla_{l} D_{i k}\right]\right)+\ldots \tag{20}\\
& M_{i j k l}^{(4)}=t^{2}\left(D_{i j} D_{k l}+D_{i k} D_{j l}+D_{i l} D_{j k}\right)+\ldots
\end{align*}
$$

for $i, j, k, l=1,2, \ldots, N$, all the higher moments being zero (in the $+\ldots$ sense). Note that the moments have been properly symmetrised.

All we have to do now is to construct a random vector with these moments and use it for the actual simulation of $\boldsymbol{r}^{\prime}-\boldsymbol{r}$. It is not difficult to check that a possible solution is

$$
\begin{equation*}
D_{i j}^{1 / 2} z_{j}+(t / 8) D_{j m}^{-1 / 2} D_{k l}\left[\nabla_{k} \nabla_{l} D_{m i}\right] z_{j}+R_{i j k} z_{j} z_{k}-t R_{i j j}+t S_{i j} z_{j} \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{i j k}=\frac{1}{4} D_{j m}^{-1 / 2}\left[\nabla_{l} D_{m i}\right] D_{l k}^{1 / 2} \\
& S_{i j}=-\frac{1}{2} D_{j m}^{-1 / 2}\left(R_{m i k} R_{i l k}+R_{m i k} R_{i k l}\right)
\end{aligned}
$$

and z is a random vector with independent components generated from the normal distribution with zero mean and variance equal to t (or an equivalent-any symmetric distribution with the same first four moments will do; let us call such a distribution $\mathbf{N}\{0, t\}$).

The essential formulae to help verify (21) are

$$
\begin{align*}
& \mathbb{E}\left(z_{i}\right)=0 \\
& \mathbb{E}\left(z_{i} z_{j}\right)=\delta_{i j} t \tag{22}\\
& \mathbb{E}\left(z_{i} z_{j} z_{k}\right)=0
\end{align*}
$$

and

$$
\mathbb{E}\left(z_{i} z_{j} z_{k} z_{l}\right)=\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) t^{2}
$$

where \mathbb{E} denotes the expected value of a random variable.

Note that in the isotropic case of $D_{i j}(\boldsymbol{r})=\delta_{i j} D(\boldsymbol{r})$, expression (21) reduces to

$$
\begin{align*}
D^{1 / 2} z_{i}+(t / 8) & D^{1 / 2}\left[\nabla^{2} D\right] z_{i}+(1 / 4)\left[\nabla_{j} D\right] z_{i} z_{j}-(t / 4)\left[\nabla_{i} D\right] \\
& -(t / 32) D^{-1 / 2}\left(\left[\nabla_{j} D\right]\left[\nabla_{j} D\right] z_{i}+\left[\nabla_{i} D\right]\left[\nabla_{j} D\right] z_{j}\right) . \tag{23}
\end{align*}
$$

The actual simulation (of both the general and isotropic case) can be simplified even further (with the objective of avoiding derivatives of $D_{i j}$) if we replace, in expression (21),

$$
t D_{k l}\left[\nabla_{k} \nabla, D_{m i}\right] \quad \text { by } \quad\left(D^{(+)}+D^{(-)}-2 D(r)\right)_{m i}
$$

and

$$
\begin{equation*}
R_{i j k} \quad \text { by } \quad(1 / 8 t) D_{j m}^{-1 / 2}\left(D^{(+)}-D^{(-)}\right)_{m i} x_{k} \tag{24}
\end{equation*}
$$

where \boldsymbol{x} is a random vector generated, independently of \boldsymbol{z}, from $\boldsymbol{N}\{0, t\}$ and

$$
\begin{align*}
& D^{(+)}=D\left(r+D^{1 / 2}(r) \cdot x\right) \\
& D^{(-)}=D\left(r-D^{1 / 2}(r) \cdot x\right) \tag{25}
\end{align*}
$$

It is a simple exercise to check that such a replacement will not change the moments of (21); thus the final version of simulating 'diffusion' of a configuration with an initial location at r is to advance it by adding, to r, the following random vector:

$$
\begin{align*}
D_{i j}^{1 / 2} z_{j}+(1 / 8) & \left(D^{(+)}+D^{(-)}-2 D\right)_{i j} Z_{j} \\
& +(1 / 8 t) z_{k} x_{k}\left(D^{(+)}-D^{(-)}\right)_{i j} Z_{j}-(1 / 8)\left(D^{(+)}-D^{(-)}\right)_{i j} X_{j} \\
& -(1 / 128 t) x_{k} x_{k}\left(D^{(+)}-D^{(-)}\right)_{i j} D_{j l}^{-1}\left(D^{(+)}-D^{(-)}\right)_{l m} Z_{m} \\
& -(1 / 128 t)\left(D^{(+)}-D^{(-)}\right)_{i j} X_{j} \cdot X_{l}\left(D^{(+)}-D^{(-)}\right)_{l m} Z_{m} \tag{26}
\end{align*}
$$

where \boldsymbol{z} and \boldsymbol{x} are generated, independently, from $\boldsymbol{N}\{0, t\}$ and

$$
Z_{j}=z_{i} D_{l j}^{-1 / 2} \quad \text { and } \quad X_{j}=x_{l} D_{l j}^{-1 / 2}
$$

Computationally, this will involve three evaluations of \boldsymbol{D}, one matrix inversion and some further simple matrix manipulation (note that the full matrix multiplication is not required). This seems a relatively modest cost of a potentially significant increase in accuracy.

References

Cramer H 1971 Mathematical Methods of Statistics 12th part (Princeton: Princeton University Press) p 101
Reynolds P J, Ceperley D M, Alder B J and Lester W A Jr 1982 J. Chem. Phys. 775593
Risken H 1984 The Fokker-Planck Equation (Berlin: Springer) p 69
Vrbik J 1985 J. Phys. A: Math. Gen. 181327
Vrbik J and Rothstein S M 1985 J. Comput. Phys. 63130

